Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.914
Filtrar
1.
J Math Biol ; 88(6): 69, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664246

RESUMEN

Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.


Asunto(s)
Encéfalo , Líquido Extracelular , Líquido Extracelular/metabolismo , Líquido Extracelular/fisiología , Porosidad , Humanos , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Membrana Basal/metabolismo , Membrana Basal/fisiología , Conceptos Matemáticos , Transporte Biológico/fisiología , Modelos Biológicos , Simulación por Computador , Modelos Neurológicos , Animales , Permeabilidad
2.
Catheter Cardiovasc Interv ; 103(6): 972-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606477

RESUMEN

BACKGROUND: Ethylene diamine tetra-acetic acid (EDTA) is a chelating agent used to dissolve calcium deposits but evidence in decalcifying atherosclerotic lesions is limited. AIMS: We assessed the feasibility and efficacy of EDTA delivered via porous balloon to target calcified lesions in cadaveric below-the-knee (BTK) arteries. METHODS: Using porcine carotid arteries, EDTA concentration was measured in the arterial wall and outside the artery at the 0-, 0.5-, 4-, and 24-h circulation after the injection through a porous balloon. In cadaver BTK samples, the proximal and distal anterior tibial artery (ATA) and distal posterior tibial artery (PTA) were studied. EDTA-2Na/H2O or EDTA-3Na/H2O were administrated using a porous balloon, then circulated for 6 h for EDTA-3Na/H2O and 24 h for EDTA-2Na/H2O and EDTA-3Na/H2O. Micro-CT imaging of the artery segments before and after the circulation and cross-sectional analyses were performed to evaluate calcium burden. RESULTS: In the porcine carotid study, EDTA was delivered through a porous balloon present in the arterial wall and was retained there for 24 h. In BTK arteries, cross-sectional analyses of micro-CT revealed a significant decrease in the calcium area in the distal ATA segment under 24-h circulation with EDTA-2Na/H2O and in the distal ATA segment under 24-h circulation with EDTA-3Na/H2O. The proximal ATA segment under 6-h circulation with EDTA-3Na/H2O showed no significant change in any parameters of calcium CONCLUSION: EDTA-3Na/H2O or EDTA-2Na/H2O with longer circulation times resulted in greater calcium reduction in atherosclerotic lesion. EDTA may have a potential therapeutic option for the treatment of atherosclerotic calcified lesions.


Asunto(s)
Angioplastia de Balón , Ácido Edético , Estudios de Factibilidad , Calcificación Vascular , Animales , Ácido Edético/farmacología , Angioplastia de Balón/instrumentación , Porosidad , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/terapia , Cadáver , Arterias Tibiales/diagnóstico por imagen , Quelantes del Calcio/farmacología , Factores de Tiempo , Microtomografía por Rayos X , Humanos , Dispositivos de Acceso Vascular , Diseño de Equipo , Sus scrofa , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/metabolismo , Placa Aterosclerótica , Porcinos
3.
J Chromatogr A ; 1722: 464899, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38626542

RESUMEN

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.


Asunto(s)
Flúor , Fluorocarburos , Nanopartículas de Magnetita , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Fluorocarburos/química , Fluorocarburos/análisis , Fluorocarburos/aislamiento & purificación , Flúor/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Porosidad , Nanopartículas de Magnetita/química , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección
4.
ACS Sens ; 9(4): 2050-2056, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38632929

RESUMEN

DNA carries genetic information and can serve as an important biomarker for the early diagnosis and assessment of the disease prognosis. Here, we propose a bottom-up assembly method for a silica nanowire-filled glass microporous (SiNWs@GMP) sensor and develop a universal sensing platform for the ultrasensitive and specific detection of DNA. The three-dimensional network structure formed by SiNWs provides them with highly abundant and accessible binding sites, allowing for the immobilization of a large amount of capture probe DNA, thereby enabling more target DNA to hybridize with the capture probe DNA to improve detection performance. Therefore, the SiNWs@GMP sensor achieves ultrasensitive detection of target DNA. In the detection range of 1 aM to 100 fM, there is a good linear relationship between the decrease rate of current signal and the concentration of target DNA, and the detection limit is as low as 1 aM. The developed SiNWs@GMP sensor can distinguish target DNA sequences that are 1-, 3-, and 5-mismatched, and specifically recognize target DNA from complex mixed solution. Furthermore, based on this excellent selectivity and specificity, we validate the universality of this sensing strategy by detecting DNA (H1N1 and H5N1) sequences associated with the avian influenza virus. By replacing the types of nucleic acid aptamers, it is expected to achieve a wide range and low detection limit sensitive detection of various biological molecules. The results indicate that the developed universal sensing platform has ultrahigh sensitivity, excellent selectivity, stability, and acceptable reproducibility, demonstrating its potential application in DNA bioanalysis.


Asunto(s)
Técnicas Biosensibles , Vidrio , Límite de Detección , Nanocables , Dióxido de Silicio , Vidrio/química , Dióxido de Silicio/química , Nanocables/química , Técnicas Biosensibles/métodos , ADN/química , Porosidad , Subtipo H5N1 del Virus de la Influenza A , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , ADN Viral/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación
5.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636150

RESUMEN

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Asunto(s)
Quitosano , Cromatografía de Afinidad , Histidina , Membranas Artificiales , Níquel , Níquel/química , Quitosano/química , Cromatografía de Afinidad/métodos , Histidina/química , Porosidad , Adsorción , Proteínas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
6.
J Nanobiotechnology ; 22(1): 204, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658948

RESUMEN

As a famous drug delivery system (DDS), mesoporous organosilica nanoparticles (MON) are degraded slowly in vivo and the degraded components are not useful for cell nutrition or cancer theranostics, and superparamagnetic iron oxide nanoparticles (SPION) are not mesoporous with low drug loading content (DLC). To overcome the problems of MON and SPION, we developed mesoporous SPIONs (MSPIONs) with an average diameter of 70 nm and pore size of 3.9 nm. Sorafenib (SFN) and/or brequinar (BQR) were loaded into the mesopores of MSPION, generating SFN@MSPION, BQR@MSPION and SFN/BQR@MSPION with high DLC of 11.5% (SFN), 10.1% (BQR) and 10.0% (SNF + BQR), demonstrating that our MSPION is a generic DDS. SFN/BQR@MSPION can be used for high performance ferroptosis therapy of tumors because: (1) the released Fe2+/3+ in tumor microenvironment (TME) can produce •OH via Fenton reaction; (2) the released SFN in TME can inhibit the cystine/glutamate reverse transporter, decrease the intracellular glutathione (GSH) and GSH peroxidase 4 levels, and thus enhance reactive oxygen species and lipid peroxide levels; (3) the released BQR in TME can further enhance the intracellular oxidative stress via dihydroorotate dehydrogenase inhibition. The ferroptosis therapeutic mechanism, efficacy and biosafety of MSPION-based DDS were verified on tumor cells and tumor-bearing mice.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ferroptosis , Nanopartículas Magnéticas de Óxido de Hierro , Sorafenib , Ferroptosis/efectos de los fármacos , Animales , Nanopartículas Magnéticas de Óxido de Hierro/química , Ratones , Humanos , Sistemas de Liberación de Medicamentos/métodos , Sorafenib/farmacología , Sorafenib/química , Sorafenib/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Porosidad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C
7.
Mar Drugs ; 22(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667777

RESUMEN

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Asunto(s)
Fosfatos de Calcio , Quitosano , Técnicas de Cocultivo , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efectos de los fármacos , Quitosano/química , Fibroblastos/efectos de los fármacos , Porosidad , Nanofibras/química , Fosfatos de Calcio/química , Animales , Regeneración Ósea/efectos de los fármacos , Ratones , Andamios del Tejido/química , Carbonatos/química , Calcificación Fisiológica/efectos de los fármacos
8.
ACS Sens ; 9(4): 1978-1991, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38564767

RESUMEN

This paper presents a sponge-based electrochemical sensor for rapid, on-site collection and analysis of infectious viruses on solid surfaces. The device utilizes a conducting porous sponge modified with graphene, graphene oxide, and specific antibodies. The sponge serves as a hydrophilic porous electrode capable of liquid collection and electrochemical measurements. The device operation involves spraying an aqueous solution on a target surface, swiping the misted surface using the sponge, discharging an electrolyte solution with a simple finger press, and performing in situ incubation and electrochemical measurements. By leveraging the water-absorbing ability of the biofunctionalized conducting sponge, the sensor can effectively collect and quantify virus particles from the surface. The portability of the device is enhanced by introducing a push-release feature that dispenses the liquid electrolyte from a miniature reservoir onto the sensor surface. This reservoir has sharp edges to rupture a liquid sealing film with a finger press. The ability of the device to sample and quantify viral particles is demonstrated by using influenza A virus as the model. The sensor provided a calculated limit of detection of 0.4 TCID50/mL for H1N1 virus, along with a practical concentration range from 1-106 TCID50/mL. Additionally, it achieves a 15% collection efficiency from single-run swiping on a tabletop surface. This versatile device allows for convenient on-site virus detection within minutes, eliminating the need for sample pretreatment and simplifying the entire sample collecting and measuring process. This device presents significant potential for rapid virus detection on solid surfaces.


Asunto(s)
Técnicas Electroquímicas , Grafito , Subtipo H1N1 del Virus de la Influenza A , Virión , Grafito/química , Virión/química , Virión/aislamiento & purificación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Propiedades de Superficie , Porosidad , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Humanos
9.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579389

RESUMEN

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Asunto(s)
Cobalto , Peróxido de Hidrógeno , Neoplasias , Óxidos , Humanos , Porosidad , Especies Reactivas de Oxígeno , Glucosa Oxidasa , Imidazoles , Carbono , Glutatión , Zinc , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
10.
Mikrochim Acta ; 191(5): 262, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613581

RESUMEN

Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.


Asunto(s)
Técnicas Biosensibles , Bismuto , Hydrangea , Molibdeno , Humanos , Biomarcadores de Tumor , Antígeno Carcinoembrionario , Porosidad , Inmunoensayo
11.
ACS Appl Mater Interfaces ; 16(15): 18522-18533, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564436

RESUMEN

The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 µm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 µm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.


Asunto(s)
Hidrogeles , Andamios del Tejido , Humanos , Hidrogeles/química , Supervivencia Celular , Porosidad , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Gelatina/química
12.
PLoS One ; 19(4): e0300326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626003

RESUMEN

This study aimed to reduce the risk of graft occlusion by evaluating the two-phase flow of blood and LDL nanoparticles in coronary artery grafts. The study considered blood as an incompressible Newtonian fluid, with the addition of LDL nanoparticles, and the artery wall as a porous medium. Two scenarios were compared, with constant inlet velocity (CIV) and other with pulsatile inlet velocity (PIV), with LDL nanoparticles experiencing drag, wall-induced lift, and induced Saffman lift forces, or drag force only. The study also evaluated the concentration polarization of LDLs (CP of LDLs) near the walls, by considering the artery wall with and without permeation. To model LDL nanoparticles, the study randomly injected 100, 500, and 1000 nanoparticles in three release states at each time step, using different geometries. Numerical simulations were performed using COMSOL software, and the results were presented as relative collision of nanoparticles to the walls in tables, diagrams, and shear stress contours. The study found that a graft implantation angle of 15° had the most desirable conditions compared to larger angles, in terms of nanoparticle collision with surfaces and occlusion. The nanoparticle release modes behaved similarly in terms of collision with the surfaces. A difference was observed between CIV and PIV. Saffman lift and wall-induced lift forces having no effect, possibly due to the assumption of a porous artery wall and perpendicular outlet flow. In case of permeable artery walls, relative collision of particles with the graft wall was larger, suggesting the effect of CP of LDLs.


Asunto(s)
Bahías , Vasos Coronarios , Simulación por Computador , Porosidad , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Estrés Mecánico
13.
PLoS One ; 19(4): e0297677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635561

RESUMEN

A nitrogen-phosphorus dual-doped porous spore carbon (NP-PSC) positive electrode matrix was prepared using native auricularia auricula as solid medium based on the principle of biomass rot. Yeast was introduce and cultured by the auricularia auricula solid medium. The freeze-drying and carbonization activation processes made the materials present a three-dimensional porous spore carbon aerogel properties. Yeast fermentation transformed auricularia auricula from blocky structure to porous structure and introduced nitrogen-phosphorus dual-doping. The physical and chemical properties of the prepared materials were characterized in detail. Electrochemical performance of NP-PSC in Li-S batteries was systematically investigated. Porous structure and heteroatom-doping improved the electrochemical performance, which is much superior to conventional activated carbon materials.


Asunto(s)
Auricularia , Litio , Saccharomyces cerevisiae , Porosidad , Iones , Nitrógeno , Fósforo
14.
Chemosphere ; 355: 141890, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575085

RESUMEN

The co-transport behavior of environmental pollutants with biochar particles has aroused great interests from researchers due to the concerns about pollutant diffusion and environmental exposure after biochar is applied to soil. In this work, the recovery and co-transport behavior of biochar micron-/nano-particles (BCMP and BCNP) and lead (Pb2+) in saturated porous media were investigated under different ionic strength conditions (IS = 1, 5 and 10 mM) under a direct current electric field. The results showed that the electric field could significantly enhance the mobility of Pb adsorbed biochar particles, particularly BCNP. The recovery of Pb laden biochar particles was improved by 1.8 folds, reaching 78.8% at maximum under favorable condition at +0.5 V cm-1. According to the CDE (Convection-Dispersion-Equation) model and DLVO (Derjaguin-Landau-Verwey-Overbeek) theory analysis, the electric field facilitated the transport of Pb carried biochar mainly by increasing the negative charges on biochar surface and improving the repulsive force between biochar and porous media. High IS was favorable for biochar transport under the electric field, but inhibited desorbing Pb2+ from biochar (18% by maximum at IS = 10 mM). By switching the electric field power, a two-stage strategy was established to maximize the recovery of both biochar particles and Pb, where BCNP and Pb recovery were higher than electric field free case by 90% and 35%, respectively. The findings of this study can help build a biochar recovery approach to prevent potential risks from biochar application in heavy metal contaminated soil remediation.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Plomo , Porosidad , Carbón Orgánico , Suelo , Contaminantes del Suelo/análisis
15.
Water Sci Technol ; 89(6): 1526-1538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557716

RESUMEN

Water scarcity is a major global challenge that affects both developed and developing countries, with Indonesia serving as a prime example. Indonesia's archipelagic nature, combined with its dense population, exacerbates the severity of water scarcity. The increased population density in these areas raises the demand for water resources, putting a strain on the available supply. The purpose of this research was to create porous mortar filters (PMFs) with different ratios (1:4, 1:5, and 1:6) by incorporating 10, 15, and 20% adsorbent material by weight of fine aggregate. The research was carried out in three stages: determining PMF properties, preparing synthetic wastewater, and assessing treatment effectiveness. Various PMF compositions consistently achieved notable success, with reductions in total dissolved solids and turbidity exceeding 25 and 75%, respectively. The PMF performed admirably in eliminating bacterial concentrations, achieving a 100% removal rate, and was critical in efficiently reducing metals, with compositions achieving over 80% reduction for manganese (Mn) and 38% reduction for iron (Fe). PMF emerges as a practical solution as a cost-effective and simple water treatment technology, particularly suitable for areas with limited technological infrastructure and resources, providing accessible water treatment for communities facing challenges in this regard.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Porosidad , Aguas Residuales , Hierro/química , Manganeso
16.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565795

RESUMEN

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Dinoprost , Retroalimentación , Nitrógeno , Porosidad , Compuestos Orgánicos , Biomarcadores
17.
Anal Chem ; 96(15): 5746-5751, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556995

RESUMEN

Microflow porous graphitized carbon liquid chromatography (PGC-LC) combined with negative mode ionization mass spectrometry (MS) provides high resolution separation and identification of reduced native N-glycan structural isomers. However, insufficient spray quality and low ionization efficiency of N-glycans present challenges for negative mode electrospray. Here, we evaluated the performance of a recently developed multinozzle electrospray source (MnESI) and accompanying M3 emitter for microflow PGC-LC-MS analysis of N-glycans in negative mode. In comparison to a standard electrospray ionization source, the MnESI with an M3 emitter improves signal intensity, identification, quantification, and resolution of structural isomers to accommodate low-input samples.


Asunto(s)
Carbono , 60705 , Carbono/química , Espectrometría de Masas en Tándem/métodos , Porosidad , Polisacáridos/química , Espectrometría de Masa por Ionización de Electrospray/métodos
18.
J Mater Chem B ; 12(16): 3996-4003, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563677

RESUMEN

Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Estructuras Metalorgánicas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Polímeros/química , Propiedades de Superficie , Porosidad , Tamaño de la Partícula , Catálisis , Biocatálisis , Poliestirenos/química
19.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613974

RESUMEN

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Asunto(s)
Cobalto , Hidróxidos , Manganeso , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganeso/química , Porosidad , Propiedades de Superficie , Sulfitos/química , Catálisis , Tamaño de la Partícula , Teoría Funcional de la Densidad , Contaminantes Químicos del Agua/química
20.
J Colloid Interface Sci ; 666: 603-614, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613982

RESUMEN

There has been an increasing demand for simultaneous detection of multiple analytes in one sample. Microbead-based platforms have been developed for multiplexed assays. However, most of the microbeads are made of non-biodegradable synthetic polymers, leading to environmental and human health concerns. In this study, we developed an environmentally friendly dextran microbeads as a new type of multi-analyte assay platform. Biodegradable dextran was utilized as the primary material. Highly uniform magnetic dextran microspheres were successfully synthesized using the Shirasu porous glass (SPG) membrane emulsification technique. To enhance the amount of surface functional groups for ligand conjugation, we coated the dextran microbeads with a layer of dendrimers via a simple electrostatic adsorption process. Subsequently, a unique and efficient click chemistry coupling technique was developed for the fluorescence encoding of the microspheres, enabling multiplexed detection. The dextran microbeads were tested for 3-plex cytokine analysis, and exhibited excellent biocompatibility, stable coding signals, low background noise and high sensitivity.


Asunto(s)
Dextranos , Microesferas , Dextranos/química , Tamaño de la Partícula , Propiedades de Superficie , Humanos , Citocinas/análisis , Química Clic , Porosidad , Ratones , Animales , Tecnología Química Verde
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...